Source code for pyfr.solvers.acnavstokes.elements

# -*- coding: utf-8 -*-

from pyfr.solvers.aceuler.elements import BaseACFluidElements
from pyfr.solvers.baseadvecdiff import BaseAdvectionDiffusionElements


[docs]class ACNavierStokesElements(BaseACFluidElements, BaseAdvectionDiffusionElements):
[docs] @staticmethod def grad_con_to_pri(cons, grad_cons, cfg): return grad_cons
[docs] def set_backend(self, *args, **kwargs): super().set_backend(*args, **kwargs) # Register our flux kernels kprefix = 'pyfr.solvers.acnavstokes.kernels' self._be.pointwise.register(f'{kprefix}.tflux') self._be.pointwise.register(f'{kprefix}.tfluxlin') # Template parameters for the flux kernels tplargs = { 'ndims': self.ndims, 'nvars': self.nvars, 'nverts': len(self.basis.linspts), 'c': self.cfg.items_as('constants', float), 'jac_exprs': self.basis.jac_exprs } # Common arguments if 'flux' in self.antialias: u = lambda s: self._slice_mat(self._scal_qpts, s) f = lambda s: self._slice_mat(self._vect_qpts, s) pts, npts = 'qpts', self.nqpts else: u = lambda s: self._slice_mat(self.scal_upts_inb, s) f = lambda s: self._slice_mat(self._vect_upts, s) pts, npts = 'upts', self.nupts # Mesh regions regions = self._mesh_regions if 'curved' in regions: self.kernels['tdisf_curved'] = lambda: self._be.kernel( 'tflux', tplargs=tplargs, dims=[npts, regions['curved']], u=u('curved'), f=f('curved'), smats=self.smat_at(pts, 'curved') ) if 'linear' in regions: upts = getattr(self, pts) self.kernels['tdisf_linear'] = lambda: self._be.kernel( 'tfluxlin', tplargs=tplargs, dims=[npts, regions['linear']], u=u('linear'), f=f('linear'), verts=self.ploc_at('linspts', 'linear'), upts=upts )